切换至 "中华医学电子期刊资源库"

中华产科急救电子杂志 ›› 2017, Vol. 06 ›› Issue (04) : 223 -227. doi: 10.3877/cma.j.issn.2095-3259.2017.04.008

所属专题: 文献

专家论坛

应用孕妇血浆胎儿游离DNA进行无创产前检测的研究
叶燕绸1, 章钧1,()   
  1. 1. 510630 广州,中山大学附属第三医院产科
  • 收稿日期:2017-07-26 出版日期:2017-11-18
  • 通信作者: 章钧

Detection research in noninvasive prenatal diagnosis of cell-free fetal DNA in maternal plasma

Yanchou Ye1, Jun Zhang1()   

  • Received:2017-07-26 Published:2017-11-18
  • Corresponding author: Jun Zhang
引用本文:

叶燕绸, 章钧. 应用孕妇血浆胎儿游离DNA进行无创产前检测的研究[J]. 中华产科急救电子杂志, 2017, 06(04): 223-227.

Yanchou Ye, Jun Zhang. Detection research in noninvasive prenatal diagnosis of cell-free fetal DNA in maternal plasma[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2017, 06(04): 223-227.

母血胎儿游离DNA(cell-free fetal DNA, cffDNA)的发现和研究极大地促进了无创产前检测(noninvasive prenatal testing, NIPT)的发展。随着高通量测序技术的不断升级优化和生物信息分析的发展,NIPT从21-三体综合征、18-三体综合征、13-三体综合征非整倍体的应用,到拷贝数变异检测的拓展,再到单基因遗传病的研究,都体现出其广阔的应用前景和临床价值。本文着重介绍NIPT技术应用于孕妇cffDNA检测研究的进展。

The discovery and research of cell-free fetal DNA (cffDNA) greatly promoted the development of noninvasive prenatal testing (NIPT). With the continuous optimization of high-throughput sequencing technology and the development of bioinformatics, NIPT showed its wide application prospects and clinical value from 21-trisomy syndrome, 18-trisomy syndrome and 13-trisomy syndrome chromosomal aneuploidy to copy number variation and single gene disease research. This article focuses on the detection research progress of cffDNA by NIPT.

[1]
Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076):485-487.
[2]
边旭明,蒋宇林,戚庆炜. 产前诊断,走中国自己的道路[J]. 中华妇产科杂志,2012, 47(11):801-803.
[3]
Evans MI, Kilpatrick M. Noninvasive prenatal diagnosis: 2010[J]. Clinics in Laboratory Medicine, 2010, 30(3):655-665.
[4]
张磊,王威. 无创产前基因检测胎儿染色体非整倍体技术研究及应用进展[J/CD]. 中国产前诊断杂志:电子版,2012, 4(3):32-40.
[5]
Litton C, Stone J, Eddleman K, et al. Noninvasive prenatal diagnosis: past, present, and future[J]. Mt Sinai J Med, 2009, 76(6):521-528.
[6]
Nicolaides KH, Syngelaki A, Ashoor G, et al. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population[J]. Am J Obstet Gynecol, 2012, 207(5):374.e1-374.e6.
[7]
Ashoor G, Poon L, Syngelaki A, et al. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks′ gestation: relation to maternal and fetal characteristics[J]. Ultrasound Obstet Gynecol, 2013, 41(1):26-32.
[8]
Tong YK, Jin S, Chiu RW, et al. Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach[J]. Clin Chem, 2010, 56(1):90-98.
[9]
Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood[J]. Proc Natl Acad Sci U S A, 2008, 105(42):16266-16271.
[10]
Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing[J]. Nature, 2011, 475(7356):348-352.
[11]
Vrachnis N, Vlachadis N, Creatsas G. DNA sequencing versus standard prenatal aneuploidy screening[J]. N Engl J Med, 2014, 371(6):578.
[12]
Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma[J]. Proc Natl Acad Sci U S A, 2008, 105(51):20458-20463.
[13]
Lo YM, Lau TK, Zhang J, et al. Increased Fetal DNA Concentrations in the Plasma of Pregnant Women Carrying Fetuses with Trisomy 21[J]. Clin Chem, 1999, 45(10):1747-1751.
[14]
Yin AH, Peng CF, Zhao X, et al. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA[J]. Proc Natl Acad Sci U S A, 2015, 112(47):14670-14675.
[15]
Mazloom AR, Džakula Ž, Oeth P, et al. Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell-free DNA from maternal plasma[J]. Prenat Diagn, 2013, 33(6):591-597.
[16]
郭可欣,杨丽,邓涛,等. NIPT用于胎儿染色体微缺失/微重复检测的进展[J]. 中国优生与遗传杂志,2016(10):10-12.
[17]
Jensen TJ, Dzakula Z, Deciu C, et al. Detection of microdeletion 22q11.2 in a fetus by next-generation sequencing of maternal plasma[J]. Clin Chem, 2012, 58(7):1148-1151.
[18]
Yatsenko SA, Peters DG, Saller DN, et al. Maternal cell-free DNA-based screening for fetal microdeletion and the importance of careful diagnostic follow-up[J]. Genet Med, 2015, 17(10):836-838.
[19]
Srinivasan A, Bianchi DW, Huang H, et al. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma[J]. Am J Hum Genet, 2013, 92(2):167-176.
[20]
Jia Y, Zhao H, Shi D, et al. Genetic effects of a 13q31.1 microdeletion detected by noninvasive prenatal testing (NIPT)[J]. Int J Clin Exp Pathol, 2014, 7(10):7003-7011.
[21]
Li R, Wan J, Zhang Y, et al. Detection of fetal copy number variations by noninvasive prenatal testing for common aneuploidies[J]. Ultrasound Obstet Gynecol, 2015, 47(1):53-57.
[22]
Lo KK, Karampetsou E, Boustred C, et al. Limited clinical utility of non-invasive prenatal testing for subchromosomal abnormalities[J]. Am J Hum Genet, 2016, 98(1):34-44.
[23]
Lun FM, Chiu RW, Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma[J]. Clin Chem, 2008, 54(10):1664-1672.
[24]
Lo YM, Chan KC, Sun H, et al. Maternal Plasma DNA Sequencing Reveals the Genome-Wide Genetic and Mutational Profile of the Fetus[J]. Sci Transl Med, 2010, 2(61):61ra91.
[25]
Lv W, Wei X, Guo R, et al. Non-invasive Prenatal Testing for Wilson Disease by Use of Circulating Single-Molecule Amplification and Resequencing Technology (cSMART)[J]. Clin Chem, 2015, 61(1):172-181.
[26]
Han M, Li Z, Wang W, et al. A quantitative cSMART assay for noninvasive prenatal screening of autosomal recessive nonsyndromic hearing loss caused by GJB2 and SLC26A4 mutation[J]. Genet Med, 2017, 19(12):1309-1316.
[1] 徐燕, 茹彤, 郑明明, 顾燕, 朱湘玉, 严陈晨, 陈玲, 戴晨燕. Miller-Dieker综合征胎儿产前超声、磁共振影像学特征及遗传学分析[J]. 中华医学超声杂志(电子版), 2024, 21(03): 281-287.
[2] 王德辉, 邓学东. 胎儿室间隔完整型肺动脉闭锁的超声心动图评估及预后分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1266-1270.
[3] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[4] 戢秀勤, 杨小红, 赵胜, 路小军, 张晓燕, 张涛, 黄晓宇. 早孕期双胎反向动脉灌注序列征的产前超声诊断[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1355-1360.
[5] 包艳娟, 杨小红, 杨星海, 潘圣宝, 杨帆, 赵胜. 腹膜后内寄生胎产前和新生儿期的临床与超声影像学特征[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1349-1354.
[6] 曾晴, 文华轩, 袁鹰, 丁妍, 罗丹丹, 廖伊梅, 梁美玲, 秦越, 彭桂艳, 林毅, 邹于, 李胜利. 二维横切面新方法对胎儿胼胝体结构异常的诊断价值[J]. 中华医学超声杂志(电子版), 2022, 19(09): 899-907.
[7] 任芸芸. 无创产前诊断时代早孕期超声检查的价值[J]. 中华医学超声杂志(电子版), 2022, 19(09): 873-876.
[8] 陈松, 黄玲巧, 余清卿, 魏志鑫, 付琰. 单细胞RNA测序技术在骨关节炎软骨中的研究应用[J]. 中华关节外科杂志(电子版), 2024, 18(03): 363-371.
[9] 薛超, 张烨, 赵映, 韩建成, 谷孝艳, 孙琳, 刘晓伟, 宋伟, 何怡华. 胎儿先天性肺动脉瓣缺如综合征的超声特征及预后分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 410-418.
[10] 张雯, 张彦春, 刘凯波, 徐宏燕. 北京市胎儿先天性脑积水的产前MRI诊断及围产期转归[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 345-349.
[11] 曾照敏, 余海燕. 超雌综合征的临床认知[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 145-150.
[12] 胡青, 余海燕. 胎儿宫内治疗及风险评估[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 23-30.
[13] 张禾璇, 宋咏刚, 杨雪. 孕妇无创产前检测结果的大样本分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 685-691.
[14] 廖雄宇, 邱坤银, 黄科, 黎阳, 徐宏贵, 方建培, 周敦华. 支气管肺泡灌洗液宏基因组二代测序对儿童肺部感染的病原体诊断价值[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 562-568.
[15] 谌燕, 冯宗辉, 姜淑敏, 李敏, 易凤梅, 谭颖. 结节性硬化症一家系的TSC2基因变异分析和产前诊断[J]. 中华诊断学电子杂志, 2024, 12(02): 112-115.
阅读次数
全文


摘要