[1] |
Busardò FP, Frati P, Zaami S, et al. Amniotic fluid embolism pathophysiology suggests the new diagnostic armamentarium: β-Tryptase and complement fractions C3-C4 are the indispensable working tools[J]. Int J Mol Sci, 2015, 16(3):6557-6570.
|
[2] |
Zhang YY, Chen H, Sun C, et al. Expression and functional characterization of NOD2 in decidual stromal cells isolated during the first trimester of pregnancy[J]. PloS One, 2014, 9(6):e99612.
|
[3] |
D′Ippolito S, Tersigni C, Marana R, et al. Inflammosome in the human endometrium: further step in the evaluation of the " maternal side"[J]. Fertil Steril, 2015, 105(1):111-118.
|
[4] |
Jin H, Wu J, Yang Q, et al. High mobility group box 1 protein polymorphism affects susceptibility to recurrent pregnancy loss by up-regulating gene expression in chorionic villi[J]. J Assist Reprod Genet, 2015, 32(7):1-6.
|
[5] |
Shirasuna K, Seno K, Ohtsu A, et al. AGEs and HMGB1 increase inflammatory cytokine production from human placental cells, resulting in an enhancement of monocyte migration[J]. Am J Reprod Immunol, 2016, 75(5):557-568.
|
[6] |
Nair RR, Khanna A, Singh K. Association of increased S100A8 serum protein with early pregnancy loss[J]. Am J of Reprod Immunol, 2015, 73(2):91-94.
|
[7] |
Martínez-Zamora MA, Tàssies D, Reverter JC, et al. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer[J]. Reprod Biomed Online, 2016, 33(2):168-173.
|
[8] |
Comba C, Bastu E, Dural O, et al. Role of inflammatory mediators in patients with recurrent pregnancy loss[J]. Fertil Steril, 2015, 104(6):1467-1474.
|
[9] |
Shi X, Xie X, Jia Y, et al. Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis[J]. Clin Genet, 2016,91(2):265-284.
|
[10] |
Gathiram P, Moodley J. Pre-eclampsia: its pathogenesis and pathophysiolgy[J]. Cardiovascular Journal of Africa, 2016, 27(2):71-78.
|
[11] |
Harmon AC, Cornelius DC, Amaral LM, et al. The role of inflammation in the pathology of preeclampsia[J]. Clin Sci(Lond), 2016, 130(6):409-419.
|
[12] |
Vlková B, Turòa J, Celec P. Fetal DNA in maternal plasma in preeclamptic pregnancies[J]. Hypertens Pregnancy, 2015, 34(1):34-36.
|
[13] |
Nadeau-Vallée M, Obari D, Palacios J, et al. Sterile inflammation and pregnancy complications: a review[J]. Reproduction, 2016, 152(6):R277-R292.
|
[14] |
Pradervand PA, Clerc S, Frantz J, et al. High mobility group box 1 protein (HMGB-1): a pathogenic role in preeclampsia?[J]. Placenta, 2014, 35(9):784-786.
|
[15] |
Nadeau-Vallée M, Quiniou C, Palacios J, et al. Novel noncompetitive IL-1 receptor-biased ligand prevents infection-and inflammation-induced preterm birth[J]. J Immunol, 2015, 195(7):3402-3415.
|
[16] |
Li J, Liu M, Zong J, et al. Genetic variations in IL1A and IL1RN are associated with the risk of preeclampsia in Chinese Han population[J]. Sci Rep, 2014, 4:5250.
|
[17] |
Yang X, Zhang J, Ding Y. Association of microRNA-155, interleukin 17A, and proteinuria in preeclampsia[J]. Medicine, 2017, 96(18):e6509.
|
[18] |
Taylor BD, Gong T, Ness RB, et al. Mid-pregnancy circulating immune biomarkers in women with preeclampsia and normotensive controls[J]. Pregnancy Hypertens, 2016, 6(1):72-78.
|
[19] |
Sun L, Mao D, Cai Y, et al. Association between higher expression of interleukin-8 (IL-8) and haplotype -353A/-251A/+678T of IL-8 gene with preeclampsia: A case-control study[J]. Medicine, 2016, 95(52):e5537.
|
[20] |
Cao W, Wang X, Chen T, et al. The expression of notch/notch ligand, IL-35, IL-17, and Th17/Treg in preeclampsia[J]. Dis Markers, 2015, 2015(6):1-9.
|
[21] |
Southcombe JH, Redman CW, Sargent IL, et al. Interleukin-1 family cytokines and their regulatory proteins in normal pregnancy and pre-eclampsia[J]. Clin Exp Immunol, 2015, 181(3):480-490.
|
[22] |
Liu B, Li Y, Yao Y, et al. Polymorphisms of theIL27gene in a Chinese Han population complicated with pre-eclampsia[J]. Sci Rep, 2016, 6:23029.
|
[23] |
Song L, Zhong M. Association between Interleukin-10 gene polymorphisms and risk of early-onset preeclampsia[J]. Int J Clin Exp Pathol, 2015, 8(9):11659-11664.
|
[24] |
Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes[J]. Am J Reprod Immunol, 2014, 72(5):458-474.
|
[25] |
Bredeson S, Papaconstantinou J, Deford JH, et al. HMGB1 promotes a p38MAPK associated non-Infectious inflammatory response pathway in human fetal membranes[J]. PloS One, 2014, 9(12):e113799.
|
[26] |
Dugoff L, Barberio A, Whittaker PG, et al. Cell-free DNA fetal fraction and preterm birth[J]. Am J Obstet Gynecol, 2016, 215(2):231.e1-231.e7.
|
[27] |
Menon R, Behnia F, Polettini J, et al. Placental membrane aging and HMGB1 signaling associated with human parturition[J]. Aging, 2016, 8(2):216-230.
|
[28] |
Baumbusch MA, Buhimschi CS, Oliver EA, et al. High Mobility Group-Box 1 (HMGB1) levels are increased in amniotic fluid of women with intra-amniotic inflammation-determined preterm birth, and the source may be the damaged fetal membranes[J]. Cytokine, 2016, 81:82-87.
|
[29] |
Adams Waldorf KM, Singh N, Mohan AR, et al. Uterine overdistention induces preterm labor mediated by inflammation: observations in pregnant women and nonhuman primates[J]. Am J Obstet Gynecol, 2015, 213(6):830. e1-830.e19.
|
[30] |
Robb KP, Cotechini T, Allaire C, et al. Inflammation-induced fetal growth restriction in rats is associated with increased placental HIF-1á accumulation[J]. PloS One, 2017, 12(4):e0175805.
|
[31] |
Dall′Asta A, Brunelli V, Prefumo F, et al. Early onset fetal growth restriction[J]. Matern Health Neonatol Perinatol, 2017, 3:2.
|
[32] |
Tamura N, Kimura S, Farhana M, et al. C1 esterase inhibitor activity in amniotic fluid embolism[J]. Crit Care Med, 2014, 42(6):1392-1396.
|
[33] |
Tamura N, Farhana M, Oda T, et al. Amniotic fluid embolism: Pathophysiology from the perspective of pathology[J]. J Obstet Gynaecol Res, 2017, 43(4):627-632.
|