切换至 "中华医学电子期刊资源库"

中华产科急救电子杂志 ›› 2020, Vol. 09 ›› Issue (02) : 87 -92. doi: 10.3877/cma.j.issn.2095-3259.2020.02.006

所属专题: 专题评论 文献

专家论坛

剖宫产后阴道分娩的评估与预测
李云秀1, 陈慧2,()   
  1. 1. 511810 深圳市,龙华区中心医院妇产科
    2. 510120 广州,中山大学孙逸仙纪念医院妇产科
  • 收稿日期:2019-11-07 出版日期:2020-05-18
  • 通信作者: 陈慧
  • 基金资助:
    广东省省级科技计划项目(2017A020214007)

Evaluation and prediction of vaginal delivery after cesarean section

Yunxiu Li1, Hui Chen2()   

  • Received:2019-11-07 Published:2020-05-18
  • Corresponding author: Hui Chen
引用本文:

李云秀, 陈慧. 剖宫产后阴道分娩的评估与预测[J/OL]. 中华产科急救电子杂志, 2020, 09(02): 87-92.

Yunxiu Li, Hui Chen. Evaluation and prediction of vaginal delivery after cesarean section[J/OL]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2020, 09(02): 87-92.

随着我国"二孩"政策实施,剖宫产后妊娠有阴道试产意愿的孕妇越来越多。本文主要就剖宫产后再妊娠阴道分娩评估与预测的相关循证医学证据进行综述,并讨论影响试产成功的因素及预测模型,为产前咨询及决定分娩方式提供参考。

With the implementation of " two children" policy, more and more pregnant women have intention of trial of labor after previous caesarean delivery. This paper mainly summarized the relevant evidence-based medical evidence of assessment and prediction about trial of labor after previous caesarean delivery, and discussed the influence factors and prediction models relate to the success of the trial to provide reference for prenatal consultation and decision-making of delivery mode.

图1 首次产检Grobman预测模型[8]
图2 入院评估Grobman预测模型[10]
表1 Flamm预测模型评分[18]
表2 Gonen预测评分模型[20]
表3 VBAC预测模型[25]
[1]
倪晓田,单震丽,阮昇明,等. 规范化剖宫产后阴道试产478例临床分析[J]. 现代妇产科进展,2018, 27(2): 115-121.
[2]
American College of Obstetricians and Gynecologists. ACOG Pratice bulletin no 115: Vaginal brith after previous cesarean delivery [J]. Obstet Gynecol, 2017, 130(5): 227-233.
[3]
Royal College of Obstetricians and Gynaecologists. Birth After Previous Caesarean Birth. Green-top Guideline No.45 [J]. Royal College of Obstetricians and Gynaecologists, 2015: 1-31.
[4]
Guise JM, Eden K, Emeis C, et al. Vaginal birth after cesarean: new insights [J]. Evid Rep Technol Assess (Full Rep), 2010, (191): 1-397.
[5]
Wu Y, Kataria Y, Wang Z, et al. Factors associated with successful vaginal birth after a cesarean section: a systematic review and meta-analysis[J]. BMC Pregnancy Childbirth, 2019, 19(1): 360-372.
[6]
Haumonte JB, Raylet M, Christophe M, et al. French validation and adaptation of the Grobman nomogram for prediction of vaginal birth after cesarean delivery[J]. JGOHR, 2018, 47(3): 127-131.
[7]
Kruit H, Wilkman H, Tekay A, et al. Induction of labor by Foley catheter compared with spontaneous onset of labor after previous cesarean section: a cohort study[J]. J Perinatol, 2017, 37(7): 787-792.
[8]
Grobman WA, Lai Y, Landon MB, et al. Development of a nomogram for prediction of vaginal birth after cesarean delivery [J]. Obstet Gynecol, 2007, 109(4): 806-812.
[9]
Grobman WA, Lai Y, Landon MB, et al. Can a prediction model for vaginal birth after cesarean also predict the probabililty of morbidity related to a trial of labor[J]. Am J Obstet Gynecol, 2009, 200(1): 1-6.
[10]
Grobman WA, Lai Y, Landon MB, et al. Does information available at admission for delivery improve prediction of vaginal birth after cesarean?[J]. Am J Perinatol, 2009, 26(10): 693-701.
[11]
Chaillet N, Bujold E, Dube E, et al. Validation of a Prediction Model for Vaginal Birth After Caesarean[J]. J Obstet Gynaecol Can, 2013, 35(2): 119-124.
[12]
Patel MD, Maitra N, Patel PK, et al. Predicting Successful Trial of Labor After Cesarean Delivery:Evaluation of Two Scoring Systems[J]. JOGI, 2018, 68(4): 276-282.
[13]
Schoorel EN, van Kuijk SM, Melman S, et al. Vaginal birth after a caesarean section: the development of a Western European population based prediction model for deliveries at term[J]. BJOG, 2014, 121(2): 194-201.
[14]
Mooney SS, Hiscock R, Clarke ID, et al. Estimating success of vaginal birth after caesarean section in a regional Australian population: Validation of a prediction model [J]. ANZJOG, 2019, 59(1): 66-70.
[15]
Fagerberg MC, Marsall K, Kallen K, et al. Predicting the chance of vaginal delivery after one cesarean section: validation and elaboration of a published prediction model [J]. Eur J Obstet Gynecol Reprod Biol, 2015, 188:88-94.
[16]
Yokoi A, Ishikawa K, Miyazaki K, et al.Validation of the prediction model for success of vaginal birth after cesarean delivery in Japanese women [J]. Int J Med Sci, 2012, 9(6): 488-491.
[17]
陆宣平,沈宗姬,陈友国,等. 国外剖宫产后阴道分娩预测公式在国内的适用性[J].中华围产医学杂志,2013, 7(16): 437-440.
[18]
Flamm BL, Geiger AM. Vaginal birth after cesarean delivery: an admission scoring system [J]. Obstet Gynecol, 1997, 90(6): 907-910.
[19]
Troyer LR, Parisi VM. Obstetric parameters affecting success in a trial of labor: designation of a scoring system [J]. Am J Obstet Gynecol, 1992, 167(4 Pt1): 1099-1104.
[20]
Gonen R, Tamir A, Degani S, et a1.Variables associated with successful vaginal birth after one cesarean section: a proposed vaginal birth after cesarean section score[J]. Am J Perinatol, 2004, 21: 447-453.
[21]
Smith GC, White IR, Pell JP, et a1. Predicting Cesarean Section and Uterine Rupture among Women Attempting Vaginal Birth after Prior Cesarean Section [J]. PLoS Med, 2005, 2(9): 871-878.
[22]
Metz TD, Stoddard GJ, Henry E, et al. Simple, Validated Vaginal Birth After Cesarean Delivery Prediction Model for Use at the Time of Admission [J]. Obstet Gynecol, 2013, 122(3): 571-578.
[23]
滑秀云,李志春,王予蒲,等. 剖宫产后再次妊娠阴道试产结局的相关因素[J]. 现代妇产科进展,2009, 9(18): 696-698.
[24]
方建红,卢伟,梁金丽,等. 剖宫产后阴道分娩的影响因素初探[J]. 中国计划生育和妇产科,2018, 10(11): 67-74.
[25]
徐嬿,李笑天,顾蔚蓉,等. 剖宫产后阴道分娩预测评分模型的初建[J]. 现代妇产科进展,2019, 5(28): 321-324.
[26]
胡海燕,钟梅,罗漫灵,等. 剖宫产术后经阴道分娩预测模型的建立[J]. 实用妇产科杂志,2019, 3(35): 195-198.
[27]
Li YX, Bai Z, Long DJ, et al. Predicting the success of vaginal birth after caesarean delivery: a retrospective cohort study in China [J]. BMJ Open, 2019, 9(5): 1-8.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[5] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[6] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[7] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[8] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[9] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?