| [1] |
Li J, Guan Z, Wang J, et al. Integrated image-based deep learning and language models for primary diabetes care[J]. Nat Med,2024,30(10):2886-2896.
|
| [2] |
Germaine M, O′Higgins AC, Egan B, et al. Label accuracy in electronic health records and its impact on machine learning models for early prediction of gestational diabetes: 3-step retrospective validation study[J]. JMIR Med Inform,2025,13:e72938.
|
| [3] |
Sudha D, Sujatha P. Gestational diabetes mellitus prediction using machine learning algorithms[C]//International Conference on Mathematical Modeling and Computational Science,Bangkok,Thailand,2025.Berlin:Springer,Cham,2025[2025-07-11].
URL
|
| [4] |
孙可盈,贺方园,张柔,等. 数字健康技术在妊娠期糖尿病患者营养管理中的应用进展[J]. 中华护理杂志,2025,60(14):1694-1699.
|
| [5] |
余琳,王慧兰,周燕媚,等. 产科智能助手预测阴道分娩产后出血的价值[J]. 中华围产医学杂志,2025,28(10):82.
|
| [6] |
Robinson D, Basso M, Chan C, et al. Guideline No. 431: postpartum hemorrhage and hemorrhagic shock[J]. J Obstet Gynaecol Can,2022,44(12):1293-1310.e1.
|
| [7] |
Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine[J]. J Intern Med,2018,284(6):603-619.
|
| [8] |
Gallos I, Devall A, Martin J, et al. Randomized trial of early detection and treatment of postpartum hemorrhage[J]. N Engl J Med,2023,389(1):11-21.
|
| [9] |
赵扬玉,杨怡珂,石慧峰. 我国产后出血研究现状和思考[J]. 中国实用妇科与产科杂志,2024,40(4):385-388.
|
| [10] |
Brun R, Spoerri E, Schäffer L, et al. Induction of labor and postpartum blood loss[J]. BMC Pregnancy Childbirth,2019,19(1):265.
|
| [11] |
Lee YW, Choi JW, Shin E. Machine learning model for predicting malaria using clinical information[J]. Comput Biol Med,2021,129:104151.
|
| [12] |
Aftab N. Artificial intelligence in obstetrics and gynaecology: advancing precision and personalised care[J]. Cureus,2025,17(6):e86929.
|
| [13] |
Gil MM, Cuenca-Gómez D, Rolle V, et al. Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study[J]. Ultrasound Obstet Gynecol,2024,63(1):68-74.
|
| [14] |
Kaur M, Girija R, Singh M ,et al.Maternal risk prediction by early detection of pre-eclampsia and high-risk pregnancies using machine learning[C]//2025 International Conference on Emerging Systems and Intelligent Computing(ESIC). Bhubaneswar,India,2025. New York:IEEE.2025:238-244.
|
| [15] |
Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis[J]. Lancet Glob Health,2014,2(6):e323-333.
|
| [16] |
Xu L, Liu Z, Ma N, et al. Development and validation of an artificial neural network prediction model for postpartum hemorrhage with placenta previa[J]. Minerva Anestesiol,2023,89(11):977-985.
|
| [17] |
Bihan L, Nowak E, Anouilh F, et al. Development and validation of a predictive tool for postpartum hemorrhage after vaginal delivery: a prospective cohort study[J]. Biology (Basel),2022,12(1):54.
|
| [18] |
Colalillo EL, Sparks AD, Phillips JM, et al. Obstetric hemorrhage risk assessment tool predicts composite maternal morbidity[J]. Sci Rep,2021,11(1):14709.
|
| [19] |
Liu J, Wang C, Yan R, et al. Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high risk factors and uterine contraction curve[J]. Arch Gynecol Obstet,2022,306(4):1015-1025.
|
| [20] |
Akter S, Forbes G, Corona MV, et al. Perceptions and experiences of the prevention, detection, and management of postpartum haemorrhage: a qualitative evidence synthesis[J]. Cochrane Database Syst Rev,2023,11:CD013795.
|